
REST API Design Guidelines

Table of Contents
Table of Contents . 2

Motivation . 3

What makes a good API for us at doubleSlash . 4

Structure - How to read. 5

General/Introduction . 5

Richardson Maturity Model. 5

Resources . 6

Naming of Resources. 6

Identification of Resources . 7

Type of Identifier . 8

Interaction with resources. 9

Versioning . 13

Data Formats . 14

Use JSON-encoded body payload . 14

Date and Time Format . 15

Language Code Format . 15

Country Code Format . 15

Currency Format . 15

Number and Integer Formats . 15

Parameter. 16

Naming of Query Parameters . 16

Filtering . 16

Selection . 17

Inclusion. 18

Sorting . 19

Pagination . 19

Error-Handling . 21

HTTP status codes . 21

Error details . 24

Security . 26

Authentication and Authorization. 26

Documentation . 27

Performance . 28

Caching . 28

Cache-Control . 28

Compression . 29

1

 The following contents are based on the Zalando Guidelines

Table of Contents
1. Motivation

a. What makes a good API for us at doubleSlash

2. Structure - How to read

3. General/Introduction

a. Richardson Maturity Model

4. Resources

a. Naming of Resources

b. Identification of Resources

c. Type of Identifier

d. Interaction with resources

e. Versioning

5. Data Formats

a. Use JSON-encoded body payload

b. Language Code Format

c. Country Code Format

d. Currency Format

e. Number and Integer Formats

6. Parameter

a. Naming of Query Parameters

b. Filtering

c. Selection

Asynchronicity . 29

Further-Concepts . 30

Testability. 30

Custom Headers . 31

HATEOAS . 31

GraphQL. 33

OData . 33

REST - more than just CRUD . 33

Checking for Existence . 34

Examples of good REST-APIs . 34

References . 35

2

https://github.com/zalando/restful-api-guidelines

d. Inclusion

e. Sorting

f. Pagination

7. Error-Handling

a. HTTP status codes

b. Error details

8. Security

a. Authentication and Authorization

9. Documentation

10. Performance

a. Caching

b. Cache-Control

c. Compression

d. Asynchronicity

11. Further-Concepts

a. Testability

b. Custom Headers

c. HATEOAS

d. GraphQL

e. OData

f. REST - more than just CRUD

g. Checking for Existence

12. Examples of good REST-APIs

13. References

Motivation
Almost no Software works without interfaces to other systems - the API (Application Programming
Interface) is often an elementary part of our daily work. Especially in the age of microservices and
distributed systems, high-quality APIs are becoming more and more important. The central
question is how to design and implement such an API. The answer to this question is often
answered by each individual - according to their own knowledge and with their own references for
best practices. So there is already a lot of knowledge on the topic of API design.

The idea behind the unified // REST API Guidelines described below is to consolidate the existing
know-how from many minds and areas, and to enrich best practices from literature and third
parties. The guidelines should help every developer to design and implement APIs according to a
consistent pattern. Furthermore, they help you to integrate your API faster, because the guidelines

3

are already familiar and therefore the behavior is predictable. As a result, developers who are new
to a project get in really fast, because the guidelines are uniformly designed. In addition, the
guidelines can be brought to the customer as an additional // asset if required.

The guidelines are especially for developers, software architects and IT consultants.

What makes a good API for us at doubleSlash
• Quick and easy to understand (approachability and learnability)

◦ built from a user’s perspective - not based on internal model

◦ discoverable

◦ explicit

◦ helpful feedback

• Hard to use incorrectly (not error-prone)

◦ avoiding implicit user assumptions

◦ preventing errors by validation

• Stable but extensible

◦ complete for the user’s use cases

◦ minimal, no YAGNI

◦ hiding implementation details

◦ extensible without the need of versioning

• Consistent

◦ self-consistent

◦ consistent across the organisation

◦ consistent with common practices & standards

• Adaptable

◦ without getting too complex

◦ keeping the user in control by allowing various flows instead of forcing specific order

• Optimized

◦ reducing number of requests

◦ reducing bandwidth (size of requests and responses)

◦ caching

• Secure

◦ avoiding to provide information that could be used for attacks

◦ avoiding to expose sensitive information to unauthorized users

◦ designed to prevent enumeration attacks

4

https://en.wikipedia.org/wiki/You_aren%27t_gonna_need_it

Structure - How to read
The // REST API Guidelines are divided into several sections:

First an introductory chapter describes the different maturity levels of HTTP APIs.

Then, the resources section covers the structure, naming and versioning of resources. The next
section describes best practices for using resource parameters for sorting, filtering, selection,
inclusion and pagination.

This is followed by the section error handling which describes a number of useful status codes and
how an error message should be written. Next, it is shown how you can secure your API followed
by best practices of how to document your API. In addition, these Guidelines describe, how you can
improve the performance of your API using caching, compression and asynchronicity.

Subsequently, further topics and concepts like HATEOAS, GraphQL and OData are described. The
guide also describes how to use actions as resources and gives advice how to check for existence of
a resource.

Finally, examples of existing good REST APIs are shown, followed by references to sources and
literature used in these guidelines.

In addition, DOs [Good] and DONTs [Bad] are highlighted in each section.

General/Introduction

Richardson Maturity Model
Leonard Richardson analyzed a hundred different web service designs and divided them into four
categories based on how much they are REST compliant.

Level 0

Level zero of maturity does not make use of any URI, HTTP Methods, and HATEOAS capabilities.
These services have a single URI and use a single HTTP method (typically POST).

Level 1

At level 1 of maturity the API can distinguish between different resources. This level uses multiple
URIs, where every URI is the entry point to a specific resource. Still, this level uses only one single
HTTP method like POST.

Level 2

At level 2, correct HTTP verbs are used with each request. It suggests that in order to be truly
RESTful, HTTP verbs must be used in API. For each of those requests, the correct HTTP response
code is provided. In other words, they are now multiple URIs and multiple HTTP methods

5

https://en.wikipedia.org/wiki/HATEOAS

Level 3

Level 3 is the highest level. It is the combination of level 2 and HATEOAS.

Resources

Naming of Resources
Every good RESTful API is resource based. A resource is a representation of a domain entity for
clients. Ideally, all resources represent the domain of the API. A resource should therefore fulfill the
following points:

Name the resource as noun in plural

Resources should be expressed as nouns, because they represent professional entities. Avoid
abbreviations and acronyms. By using the plural you also get a resource for collection queries.

Good

/chapters/3/sections/2/rules/1

Bad

/chapter/3/section/2/rule/1

Name the resource domain specific

As already mentioned several times, REST resources are functional entities. Therefore, it supports
the understanding if resources are named specifically. Make sure that the spoken language in
everyday project work is also reflected in the resources (Conway’s law).

Good

/chapters/3/sections/2/rules/1

Bad

/levels/3/sub-levels/2/sub-sub-levels/1

Use spinal-case notation

Use spinal-case notation for resource names.

Good

6

https://en.wikipedia.org/wiki/HATEOAS
https://en.wikipedia.org/wiki/Conway%27s_law

/api-design-chapters/3/chapter-sections/2/section-rules/1

Bad

/api_design_chapters/3/chapter_sections/2/section_rules/1
/apiDesignChapters/3/chapterSections/2/sectionRules/1

Use sub-resources to represent relations between entities

Entities often have dependencies on each other. Such a dependency can be represented by nesting
several resources (separated by /).

Good

/api-design-chapters/3/chapter-sections/2/section-rules/1

Bad

/chapter_sections-of-chapter1/2
/section-rules-of-section1/1

Identification of Resources
The very first step in designing a REST API based application is – identifying the objects which will
be presented as resources. Resources should be defined to cover 90% of all its client’s use cases. A
useful resource should contain as much information as necessary, but as little as possible. A
resource can be a collection or a singleton. For example, "customers" is a collection resource and
"customer" a singleton resource. A collection resource can be identified using the Uniform Resource
Name (URN) e.g:

/customers

A singleton resource can be identified using the URN e.g:

/customers/{customerId}

A resource may contain sub-collection resources. For example "accounts" of a particular "customer"
can be identified using the URN:

/customers/{customerId}/accounts

7

A specific account for a particular customer can be identified via URN as follows:

/customers/{customerId}/accounts/{accountId}

Type of Identifier
For security and data protection reasons it is advisable that the identifier is not enumerable or easy
to guess. It must not contain personal or private data (URLs appear in access logs, browser
history,…). The type of identifier should not allow attackers or competitors to make inferences
about the system (enumeration attacks). For practical reasons the identifier should not be subject to
change.



Prefer UUIDs as identifiers (and as primary keys).
Consider the specific consequences carefully if you choose another identifier type
taking into account enumeration attacks, data and privacy protection, web
application firewalls.


Only use enumerable IDs if you can be certain that there is no risk of enumeration
attacks in the specific context.

Common type of identifiers:

Identifier Type Pros Cons

UUID
= Universally Unique Identifier

Examples:

• /documents/f6c47559-f002-4af6-b7bb-
2ddc4146e14d

• Globally unique across
systems

• Can be generated
independently

• Suitable for distributed
systems

• Generating large
numbers of UUIDs may
be inperformant due to
lack of entropy

• Higher storage and
indexing requirements

• Lengthy and less
human-readable

Enumerable ID
e.g. consecutive integer numbers

Examples:

• /person/1

• Simple, easy to work
with

• Efficient generation,
indexing and querying
in databases

• Enumeration attacks,
data protection /
privacy issues

• Allows attackers or
competitors to make
inferences about the
system

• Simplifies getting
access to private data

8

Identifier Type Pros Cons

Custom Codes
e.g. e-mail, username, ticket key, VIN,
ISBN…

Examples:

• /users/max@mustermann.de

• /users/mmustermann

• /api/tickets/TKT-23456

• /vehicles/WBAAV53471J297245

• /books/978-9-6566-2511-9

• Easy resource
identification

• Potentially data
protection / privacy
issues

• Some data might be
blocked by web
application firewalls
(WAF) e.g. e-mail

• May require additional
validation logic

• Maintaining
uniqueness

• Might change

Slugs
human-readable and URL-friendly strings
derived from a resource’s attributes

Examples:

• /blogs/my-great-article

• Descriptive

• URL-friendly

• Improves SEO and user
experience

• Potentially data
protection / privacy
issues

• Uniqueness checks

• Duplicate handling

• Might change

Further reading:

• REST APIs: Use UUID to Identify a Resource

Interaction with resources
HTTP defines a set of request methods to indicate the desired action to be performed for a given
resource. Be compliant with the standardized HTTP method semantics summarized as follows:

GET

GET requests are used to read either a single or a collection resource.

• GET requests for collection resources may return either 200 (if the collection result is empty) or
404 (if the collection itself is missing)

• GET requests for individual resources will usually generate a 404 if the resource does not exist

• GET requests must NOT have a request body payload (see GET with body)

Situation Response

Requested collection
does not exist

404

Example:
GET /not-existing-collection ⇒ 404

9

https://www.at7.it/en/blog/rest_uuid_resource
https://opensource.zalando.com/restful-api-guidelines/#get-with-body

Situation Response

Requested collection is
empty

200, []

Example:
GET /users ⇒ 200, []

Requested collection is
not empty

200, list of results

Example:
GET /users ⇒ 200, [{ "id": 1, "username": "ed.example", … }, {
"id": 2, … },…]

Requested individual
resource does not exist

404

Example:
GET /users/1 ⇒ 404

Requested individual
resource exists

200, the resource

Example:
GET /users/1 ⇒ 200, { "id": 1, "username": "ed.example", … }

POST - Create

POST used to create single resources on a collection resource endpoint, but other semantics on
single resource endpoint are equally possible.

• if resource have been updated POST request will generate 200

• if resource have been created POST request will generate 201

• if the request was accepted but not has been finished yet, POST request will generate 202

• if the actual resource is not returned POST request will generate 204

PUT - Update

PUT requests are used to update resources but are usually applied to single resources, and not to
collection resources.

• PUT requests are usually robust against non-existence of resources by implicitly creating before
updating

• if the resource have been updated- with or without content PUT request will generate 200 or
204

• if the resource have been created PUT request will generate 201

Usage of POST vs PUT

It is the best practice to prefer POST to PUT for creation of resources. This leaves the resource ID
under control of the service and allows concentrating on the update semantic using PUT. For
example to create a new product rather use POST than PUT:

10

Good

POST /shop/products HTTP 1.1

Bad

PUT /shop/products HTTP 1.1

PATCH

PATCH requests are used to update parts of single resource for example if only a particular subset
of resource fields should be replaced.

• PATCH request are usually not robust against non-existing resources

• if resource have been updated with or without updated content returned PATCH request will
generate 200 or 204

• Can be used to update references between existing resources e.g. PATCH /books/1 { "authorId" :
234 }.


If patching multivalued fields is needed, have a look at A better way to implement
HTTP PATCH operation in REST APIs and RFC 6902.

Usage of PATCH vs PUT

• use PATCH with partial objects to only update parts of a resource, whenever possible. (This is
basically JSON Merge Patch, a specialized media type application/merge-patch+json that is a
partial resource representation.)

• use PATCH with JSON Patch, a specialized media type application/json-patch+json that includes
instructions on how to change the resource.

• use PATCH only with an explicit reason why POST or PUT does not fit here

• use PUT over PATCH to update a resource as long as feasible. For example to update a product
rather use PUT than PATCH:

Good

PUT /shop/products/1 HTTP 1.1

Bad

PATCH /shop/products/1 HTTP 1.1

11

https://medium.com/@isuru89/a-better-way-to-implement-http-patch-operation-in-rest-apis-721396ac82bf
https://medium.com/@isuru89/a-better-way-to-implement-http-patch-operation-in-rest-apis-721396ac82bf
https://datatracker.ietf.org/doc/html/rfc6902
https://tools.ietf.org/html/rfc7396
https://tools.ietf.org/html/rfc6902

DELETE

DELETE requests are used to delete single resources but also can be applied to multiple resources
using query parameters on the collection resource.

• if the deleted resource is returned with or without content, DELETE request will generate 200 or
204

• failed DELETE requests will usually generate 404 (if the resource cannot be found) or 410 (if the
resource was already deleted before).

DELETE with query Parameters

DELETE requests can have query parameters. Query parameters should be used as filter
parameters on a resource.

DELETE /resources?param1=value1¶m2=value2...¶mN=valueN

DELETE with body

Sometimes DELETE requests may require additional information, that cannot be classified as filter
parameters.

POST /resources/{resource-id}
{
 "prop1": "value1",
 ...
 "propN": "valueN",
}

HEAD

HTTP HEAD requests are used to retrieve the header information of single resources and resource
collections. For example, if a URL might produce a large download, a HEAD request could read its
Content-Length header to check the filesize without actually downloading the file.

• a response to a HEAD method should not have a body. If it has one anyway, that body must be
ignored.


In addition, everyone must be aware which methods are safe, idempotent and
cacheable

Safe Methods

As per HTTP specification, the GET and HEAD methods should be used only for retrieval of
resource representations - and they do not update/delete the resource on the server. Both methods
are said to be considered "safe".

12

Idempotent Methods

The term idempotent is used more comprehensively to describe an operation that will produce the
same results if executed once or multiple times. In HTTP specification, The methods GET, HEAD,
PUT and DELETE are declared idempotent methods.

Cacheable Methods

Request methods are considered "cacheable" if it is possible and useful to answer a current client
request with a stored response from a prior request. GET and HEAD are defined to be cacheable.

Versioning



It is best to avoid versioning altogether, because versions give you the illusion
you could change your API. You can’t force your customers to switch to the new
version. So either you need to support all API versions forever or you can only
apply backwards compatible change, but then you do not need API versioning
anyway. See "API-Design – Wie man es besser (nicht) macht" by Uwe Friedrichsen.

If you cannot avoid versioning use the following best practices:

To identify the version of the API a three number semantic versioning restricted to the format
<MAJOR><MINOR><PATCH> for versions as follows is recommended:

• Increment MAJOR version when breaking changes* were made

• Increment MINOR version when new functionality in a backwards-compatible manner was
added

• Increment PATCH version when backwards-compatible bug fixes or editorial changes not
affecting the functionality were made

*breaking changes are backwards-incompatible changes



Even for very small changes that may affect only one percent of the clients, the
MAJOR version would have to be incremented, because semantic versioning is not
there to indicate how extensive a change is. Alternatively, a simple scheme like
MAJOR.MINOR can be used. MAJOR version shows major changes and the MINOR
release shows minor changes.

Compatibility

There are two techniques to change APIs without breaking them

• follow rules for compatible extension

• introduce new API versions and still support older versions


Prefer to make compatible changes without versioning. The following steps will
help to make compatible changes:

13

https://www.youtube.com/watch?v=2xgplCQS1bY

• Add only optional never mandatory fields

• Never change the semantic of the fields

• Never change the validation logic to be more restrictive

• return JSON object as a top-level data structure to support future extensibility [support
compatible extensions by additional attributes]

Prepare Service Clients accept compatible API extensions

• Be tolerant with unknown fields in the payload

• Be prepared to handle HTTP status codes not explicitly specified in endpoint definitions

Avoid versioning

When changing your REST API, do it in a compatible way and avoid generating additional API
versions. If changes can’t be done in a compatible way, then follow these three steps:

• create a new resource (variant) in addition to the old resource variant

• create a new service endpoint

• create a new API version supported in parallel with the old API by the same microservice

Deprecation

In some cases it is necessary to phase out an API endpoint, an API version, or an API feature, e.g. if a
field or parameter is no longer supported or a whole business functionality behind an endpoint is
supposed to be shut down.

As long as the API endpoints and features are still used by consumers these shut-downs are
breaking changes and not allowed. To progress the following deprecation rules have to be applied
to make sure that changes and actions are well communicated and aligned using deprecation dates.

• must obtain approval of clients before shut down.

• must collect external partner consent on deprecation time span

• must reflect deprecation in API specifications

• must monitor usage of deprecated API

• must not start using deprecated APIs

Data Formats

Use JSON-encoded body payload
JSON is the standard for transferring data, so REST APIs should accept JSON for request payload
and also send responses to JSON. In the response header the content-type should be set to
application/json to make sure that if we send a response encoded as JSON, it will be interpreted as
JSON by the client as well.

14

Date and Time Format
Use ISO 8601 format for passing in and out dates and times. Use [UTC] as timezone.

Date 2020-08-03

date and time in UTC 2015-07-02T14:47:47Z

Language Code Format
Use language codes defined by the ISO 639 code standard.

Code Language

en English

de German

it Italian

Country Code Format
Use country codes defined by the ISO 3166-1-alpha-2 code standard.

Code Country

AD Andorra

DE Germany

FR France

US United States of America

Currency Format
Use 3-character ISO-4217 codes for specifying currencies.

Code Currency

EUR Euro

CHF Swiss franc

USD US Dollar

Number and Integer Formats
Whenever an API defines a property of type number or integer, the precision must be defined by
the format as follows:

15

https://en.wikipedia.org/wiki/ISO_8601
https://en.wikipedia.org/wiki/List_of_ISO_639-1_codes
https://en.wikipedia.org/wiki/ISO_3166-1_alpha-2
http://en.wikipedia.org/wiki/ISO_4217#Active_codes

Type Format Value Range

integer int32 integer between -231 and 231-1

integer int64 integer between -263 and 263-1

integer bigint arbitrarily large signed integer
number

number float IEEE 754 binary32 decimal
number

number double IEEE 754 binary64 decimal
number

number decimal arbitrarily precise signed
decimal number

Parameter

 Query parameters should be optional (no error if left out)

Naming of Query Parameters
• Query parameters start with a letter.

• Query parameters should be either camelCase or snake_case (consistent with case standards for
field names).

• As always, choose good unambiguous names e.g. "firstname" instead of "name".

Good

...?firstName=Max

...?first_name=Max

Bad

...?first-name=Max

...?name=Max

Filtering
URL parameters are the easiest way to add basic filtering to REST APIs. For example:

// exact match
GET /persons?firstname=max
GET /persons?firstname=max&surname=muster

16

https://en.wikipedia.org/wiki/IEEE_754
https://en.wikipedia.org/wiki/IEEE_754

// lower or higher than
GET /persons?age<18
GET /persons?age>18

// list of persons whose firstname contains the "der" word (Leander, Alexander ...)
GET /persons?firstname=%2Ader%2A

URL parameters only have a key and a value but filters are composed of three components.

• The property or field name

• The operator (eq, lte, gte)

• The filter value

One way to encode operators is the use of square brackets [] on the key name. For example:

// persons older than 21
GET /persons?age[gte]=21

Similar to the bracket approach:

// persons older than 21
GET /persons?age=gte:21

If you require search on your endpoint, you can add support for filters and ranges directly with the
search parameter

// items that contain the terms "red chair"
GET /items?q=title:red chair

Selection
Field Selection (to avoid over-fetching)

Mobile clients display just a few attributes in a list. They don’t need all attributes of a resource. Give
the API consumer the ability to choose returned fields. This will also reduce the network traffic and
speed up the usage of the API.

// returning firstname, surname and id of persons
GET /persons?fields=firstname,surname,id


A typical answer to the problem of over-fetching is to use GraphQL instead of REST.
But the problem can often be solved using selection instead.

17

Inclusion
Inclusion (to avoid under-fetching)

An example request without including associated resources:

GET /books/1

=> 200, OK:
{
 "id": 1,
 "title": "My great novel",
 ...
 "authorId": 123
}

An example request that includes an associated resource:

GET /books/1?include=author

=> 200, OK:
{
 "id": 1,
 "title": "My great novel",
 ...
 "authorId": 123,
 "author": {
 "id": 123,
 "firstname": "Max",
 "surname": "Maximus",
 ...
 }
}

An example request that includes an associated resource selecting only some fields:

GET /books/1
 ?include=author
 &fields=title,isbn,author.surname

=> 200, OK:
{
 "title": "My great novel",
 "isbn": "978-7-4171-0270-1",
 "author": {
 "surname": "Maximus"
 }

18

}

An example request that includes multiple associated resources selecting only some fields:

GET /books/1
 ?include=author,publisher
 &fields=
 title,isbn,
 author.surname,
 publisher.name

=> 200, OK:
{
 "title": "My great novel",
 "isbn": "978-7-4171-0270-1",
 "author": {
 "surname": "Maximus"
 },
 "publisher": {
 "name": "Maximus Press"
 }
}


A typical answer to the problem of under-fetching is to use GraphQL instead of
REST. But the problem can often be solved using inclusion instead.

Sorting
Allows ascending (+) and descending (-) sorting over multiple fields.

// returns a list of persons sorted by ascending age.
GET /persons?sort=+age

Pagination
Lists that potentially larger than just a few hundred entries must support pagination to protect the
service against overload as well as for best client side iteration and batch processing experience.

There are two popular techniques to support pagination:

• Offset/Limit-based pagination: numeric offset identifies the first page entry

• Cursor/Limit-based: a unique key element identifies the first page entry

To navigate to a specific page, next/prev page links were recommended to enhance the user
experience. This favors cursor-based over offset-based pagination.

19

https://developer.infoconnect.com/paging-results
https://developer.twitter.com/en/docs/pagination

Choosing the right pagination technique depends on the particular use cases:

• Usability/framework support

◦ Offset-based pagination is more widely known, so it has more framework support and is
easier to use for API Clients

• Use Case - jump to a certain page

◦ cursor-based pagination is not feasible for jumping to a particular page in a range. (e.g 51 of
100)

• Data changes may lead to anomalies in result pages:

◦ Offset-based pagination may create duplicates or lead to missing entries if rows are inserted
or deleted between two subsequent paging requests.

◦ If implemented incorrectly, cursor-based pagination may fail when the cursor entry has
been deleted before fetching the pages.

• efficient server-side processing with very big data sets is hardly feasible using offset-
pagination

The cursor used for pagination is an opaque pointer to a page, that must never be inspected or
constructed by clients. It usually encodes (encrypts) the page position, i.e. the identifier of the first
or last page element, the pagination direction, and the applied query filters - or a hash over these -
to safely recreate the collection. The cursor may be defined as follows:

Cursor:
 type: object
 properties:
 position:
 description: >
 Object containing the identifier(s) pointing to the entity that is
 defining the collection resource page - normally the position is
 represented by the first or the last page element.
 type: object
 properties: ...

 direction:
 description: >
 The pagination direction that is defining which elements to choose
 from the collection resource starting from the page position.
 type: string
 enum: [ASC, DESC]

 query:
 description: >
 Object containing the query filters applied to create the collection
 resource that is represented by this cursor.
 type: object
 properties: ...

 query_hash:

20

 description: >
 Stable hash calculated over all query filters applied to create the
 collection resource that is represented by this cursor.
 type: string

 required:
 - position
 - direction

The page information for cursor-based pagination should consist of a cursor set, that besides next
may provide support for prev, first, last, and self as follows:

{
 "cursors": {
 "self": "...",
 "first": "...",
 "prev": "...",
 "next": "...",
 "last": "..."
 },
 "items": [...]
}

Error-Handling

HTTP status codes
Define all success and service specific error responses in your API specification. Both are part of
the interface definition and provide important information for service clients to handle standard as
well as exceptional situations. But notice, it is not useful to document all technical errors, especially
if they are not under control of the service provider. See overview on all HTTP status codes on
Wikipedia

Success codes

Status code Description Methods

200 OK - standard success response ALL

201 Created resource created POST, PUT

202 Accepted for processing - but
processing has not been
completed

POST, PUT, PATCH, DELETE

204 No content - successfully
processed but must not include
a message body

PUT, PATCH, DELETE

21

https://en.wikipedia.org/wiki/List_of_HTTP_status_codes


The 204 response is usually used as a result of a PUT request. The status code
allows a server to indicate that the action has been successfully applied to the
target resource, but that the client doesn’t need to go away from its current page.

For example, a 204 status code is commonly used with document editing interfaces corresponding
to a "save" action, such that the document being saved remains available to the user for editing.

Redirection codes

Status code Description Methods

301 Moved Permanently - This and
all future requests should be
directed to the given URI.

ALL

303 See Other - The response of the
request can be found under
another URI

POST, PUT, PATCH, DELETE

304 Not Modified - resource has not
been modified since the version
specified

GET, HEAD

Client side error codes

Status code Description Methods

400 Bad Request - Server
cannot/will not process the
request due to an apparent
client error

ALL

401 Unauthorized - Similar to 403,
but specially for use when
authentication is required and
has failed

ALL

403 Forbidden - Request contained
valid data and was understood
by the server, but the server is
refusing action

ALL

404 Not Found - Requested
resource could not be found but
may be available in the future

ALL

405 Method not Allowed -
Requested method is not
supported for the requested
resource

ALL

22

Status code Description Methods

406 Not Acceptable -The requested
resource is capable of
generating only content not
acceptable according to the
Accept headers sent in the
request

ALL

408 Request Timeout - Server
timed out waiting for the
request

ALL

409 Conflict (business logic) -
Request could not be processed
e.g. create request but resource
already exists

POST, PUT, PATCH, DELETE

410 Gone - Requested resource is no
longer available

ALL

415 Unsupported Media Type -
request entity has a media type
which the server does not
support

POST, PUT, PATCH, DELETE

423 Locked - The resource that is
being accessed is locked

PUT, PATCH, DELETE

428 Precondition Required - The
origin server requires the
request to be conditional

ALL

429 Too Many Requests - The user
has sent too many requests in a
given amount of time

ALL

Server side error codes

Status code Description Methods

500 Internal Server Error - generic
error message

ALL

501 Not Implemented - Server
either doesn’t recognize the
request method, or it lacks the
ability to fulfill the request

ALL

503 Service unavailable - server
cannot handle the request

ALL

23

Error details
Only returning status codes is usually not enough information to handle an error. High quality
error codes tell you what went wrong and why it went wrong.


Follow RFC 7807 as closely as possible. Event though is still only a "Proposed
Standard" we recommend to follow it as closely as possible.



Consider that some details may be interesting for attackers: Decide carefully
what information to include in the error response. The details provided ought to
focus on helping the client correct the problem, rather than giving debugging
information. Never include technical details like stack-traces or other sensitive
information. Please, see the following tip how to deal with these.

Example:
Authentication and authorization: "Username does not exist" may be too much
detail. This way an attacker can find out which users exist and which users don’t.



Reference to sensitive or technical detail using a log reference: A good way to
omit sensitive details without loosing them is to log them in the backend
accompanied by a log reference (or error detail reference) and to include the log
reference in the response. This helps support employees and developers analyzing
and fixing a problem.

• Log references can be implemented using a UUID.

• Include the log reference in the detail message or in a separate field of the
error response.

• Always include a log reference for unknown errors.

Three basic information should be included in every error message.

• HTTP status code - identify source and range (use standardized status codes)

• Internal reference ID - document specific notation of errors

• Readable error message - summarize context, cause and general solutions for the particular
error

Let’s take the 400 - Bad request example: completely meaningless for the client-side resolution of
the problem. The following example is much more precise:

< HTTP/1.1 400 Bad Request
< Date: Wed, 31 May 2020 19:01:41 GMT
< Server: Apache/2.4.25 (Ubuntu)
< Connection: close
< Transfer-Encoding: chunked
< Content-Type: application/json

24

https://datatracker.ietf.org/doc/html/rfc7807

{
 "statusCode": 400,
 "errorMessage": "Bad Request - Your request is missing parameters. Please verify
and resubmit.",
 "errorId": "CLIENT_MISSING_PARAMETERS",
 "requestURL": https://ft-jpa.ds.net/dabdd/status/v1/register,
 "requestTimestamp": 2020-05-31T19:01.40z"
 "parameterErrors" [
 {
 "name": "user.name",
 "message": "must not contain null value"
 },
 {
 "name": "vehicles",
 "message": "must not be empty"
 }
]
}

The following example shows an error-message caused by a correct client side request. The
parameter was transmitted correctly by the client but cannot be processed on the server side.

< HTTP/1.1 422 Unprocessable Entity
< Date: Wed, 31 May 2020 19:01:41 GMT
< Server: Apache/2.4.25 (Ubuntu)
< Connection: close
< Transfer-Encoding: chunked
< Content-Type: application/json

{
 "statusCode": 422,
 "errorMessage": "E-Mail address not known.",
 "errorId": "LOGIN_EMAIL_UNKNOWN",
 "requestURL": "https://ft-jpa.ds.net/dabdd/status/v1/login",
 "requestTimestamp": 2020-05-31T19:01.40z"
 }

It’s not helpful to use the same structure for every error-cases. Some error-codes need more, some
need less information. With regard to the API design it’s important to identify possible errors at the
API and link them to the particular error codes. Furthermore, consider the error responses. Which
parameters are returned in the response for which error case? The goal is to have one error code
with defined response parameters for each potential error case. To identify the particular response
parameter, a few questions should be clarified in advance:

• errors caused by client or internal causes?

• which response parameters are helpful for the customer?

• which response parameters are helpful for the API-provider, to identify the cause of error as
fast as possible?

25

Security
Most APIs are exposed to the Internet, so they need suitable security mechanisms to prevent abuse,
protect sensitive data, and ensure that only authenticated and authorized users can access them.
(See OWASP TopTen for more detailed information.)

Authentication and Authorization

Connection Security

Secure REST APIs should only provide HTTPS endpoints to ensure that all API communication is
encrypted using SSL/TLS. This allows clients to authenticate the service and protects the API
credentials and transmitted data.

API Access Control

Because REST APIs are stateless, access control is handled by local endpoints. The most common
REST API authentication methods are (Authentication and Authorization),(security-cheatsheet):

JSON Web Tokens (JWT)

Credentials and other access parameters are sent as JSON data structures. These access tokens can
be signed cryptographically and are the preferred way of controlling access to REST APIs.

OAuth

Standard OAuth 2.0 mechanisms can be used for authentication and authorization.

API Keys

API Keys can be used to prevent abuse or malicious use of the API. Furthermore, they can reduce
the impact of denial-of-service attacks. However, when API Keys are issued to third-party clients,
they are relatively easy to compromise.

• Require API keys for every request to the protected endpoint.

• Return 429 - Too Many Requests if requests are coming in too quickly.

• Revoke the API key if the client violates the usage agreement.

• Do not rely exclusively on API keys to protect sensitive, critical or high-value resources.

Restrict HTTP methods

• Apply a whitelist of permitted HTTP Methods e.g. GET, POST, PUT.

• Return 405 - Method not allowed if request not matching the whitelist.

• Make sure the caller is authorized to use the incoming HTTP method on the resource collection,
action, and record

26

https://swagger.io/docs/specification/authentication/
https://cheatsheetseries.owasp.org/cheatsheets/REST_Security_Cheat_Sheet.html
https://oauth.net/2/

Validation of parameters

Typical best-practice guidelines for input validation apply:

• Treat all parameters, objects, and other input data as untrusted.

• Use built-in validation functionality where available.

• Check the request size and content length and type.

• Use strong typing for API parameters (if supported).

• To prevent SQL injection, avoid building queries manually – use parameterized queries instead.

• Whitelist parameter values and string inputs wherever possible.

• Log all input validation failures to detect credential stuffing attempts.

Management Endpoints

• Avoid exposing management endpoints via Internet.

• If management endpoints must be accessible via the Internet, make sure that users must use a
strong authentication mechanism, e.g. multi-factor.

• Expose management endpoints via different HTTP ports

• Restrict access to these endpoints by firewall rules or use of access control lists.

Sensitive Information in HTTP requests

In order not to leak credentials. Passwords, security tokens, and API keys should not appear in the
URL.

• In POST, PUT requests sensitive data should be transferred in the request body or request
headers.

• In GET requests sensitive data should be transferred in an HTTP header.

GOOD

https://example.com/collection/{123}/action

BAD

https://example.com/collection/{123}/action?apiKey=a123

Documentation
API designers are required to provide a short but meaningful description about the purpose of the
API. It is recommended to publish the API documentation with the deployment of the implementing
service. In the following, best practices for API documentation are listed:

27

• describe the purpose of the API

• describe important use cases to give developers a quick head start

• enable a developer to use your API as quick as possible

• Use OpenAPI (aka Swagger) as description and definition language of your API.

• Use OpenAPI to create API reference documentation.

• Use Software Creation Chain interface documentation as help for documenting your API.

Performance

Caching
The goal of caching is never having to generate the same response twice. Furthermore, by doing
this, we gain speed and reduce server load. The best way to cache your API is to put a gateway
cache (or reverse proxy) in front of it. A very powerful open-source reverse proxy is Varnish.

When a safe method is used on a resource URL, the reverse proxy should cache the response that
is returned from your API, and then will use this cached response for all subsequent requests for
the same resource before they hit your API.

When an unsafe method is used on a resource URL, the cache ignores it and passes it to the API.

Cache-Control
Generally we assume that GET requests are cached and PUT, POST and DELETE requests are not.
Unfortunately most APIs require additional caching rules for some requests. For these reasons, it’s
a good idea to set cache-control headers. These contain many different options for the appropriate
handling of cached data. Refer to Overview of Cache-Control HTTP headers for additional controls.

For example use max-age to indicate after how many seconds the response should be considered
out-of-date:

GET users/123

HTTP 1.1 200 OK
...
Cache-Control: max-age=600
Content-Type: text/json; charset=utf-8
Content-Length: ...
{
 "id": 123,
 "firstname": "Max",
 "surname":"Mustermann"
}

To disable caching completely use the no-cache and no-store directives:

28

https://swagger.io/specification/
https://varnish-cache.org/
https://developer.mozilla.org/en-US/docs/Web/HTTP/Headers/Cache-Control

GET users/123

HTTP 1.1 200 OK
...
Cache-Control: no-cache, no-store
Content-Type: text/json; charset=utf-8
Content-Length: ...
{
 "id": 123,
 "firstname": "Max",
 "surname":"Mustermann"
}

Compression
Compress the payload of your APIs responses using gzip, this helps to transport data faster over the
network (fewer bytes) and makes frontends respond faster. But do not use gzip compression if you
are serving so many requests that the time to compress becomes a bottleneck.

Next to requesting a particular resource, the client sends Accept-Encoding header that says what
kind of compression algorithms the client understands. For example:

GET /employees HTTP/1.1
Host: www.domain.com
Accept: text/html
Accept-Encoding: gzip, compress

If the server understands one of the compression algorithms from Accept-Encoding, it can use that
algorithm to compress the representation before serving it. When successfully compressed, server
lets know the client of encoding scheme by the Content-Encoding header. For example:

200 OK
Content-Type: text/html
Content-Encoding: gzip

Asynchronicity
If an API operation is asynchronous you must return a 202-ACCEPTED response code. This informs
the client that the request has been accepted and understood by the server, but the resource is not
yet completed. Instead of the URI of the actual resource, it would send a location to a status
resource. For example a response like:

HTTP/1.1 202 Accepted
Location: /queue/621252

29

The location URI points to a (created) resource that will display the status of the asynchronous
processing:

Request:

GET /queue/621252 HTTP/1.1

Response:

HTTP/1.1 200 OK
{
 "status": "In progress",
 "eta": "3 minutes, 25 seconds"
}

As soon as processing is done, the server can create the original resource and delete the queue-
resource. If the client wants to fetch the status again, the server will return a 303-SEE OTHER code:

Request:

GET /queue/621252 HTTP/1.1

Response:

HTTP/1.1 303 See Other
Location: /blog/20010101-myblogarticle

Further-Concepts

Testability
Every API description (contract) using HTTP(S) protocol MUST be tested against its API
implementation. The tests can be executed using the Dredd testing framework.

In addition to local runs, the tests should be an integral part the API implementation’s CI/CD
pipeline. The CI/CD pipeline should be configured to run the test whenever there is a change to
either API description (contract) or its implementation.

Consumer Driven Contracts

In a micro service architecture many services are created in different programming languages. To
ensure smooth communication between them, the interfaces must fit and remain stable over time.
Consumer-Driven Contracts is an approach that additionally tests the interfaces and their callers.

30

https://github.com/apiaryio/dredd

Custom Headers

Naming

Custom headers have been used in the past with an X-prefix, but this convention was deprecated in
June 2012 because of the inconveniences it caused when nonstandard fields became standard in
RFC 6648. IANA also maintains a registry of proposed new HTTP headers.

Usage

Custom headers are often used in system to system connections where the system is acting on
behalf of a third party (See also proprietary-headers).

For example, user U talks to server A. Server A presents credentials to server B with a custom
header to say "Use my credentials to check that I’m authorized to perform this action on behalf of
user U.

HATEOAS

What is HATEOAS?

HATEOAS stands for Hyptertext As The Engine Of Application State.It means that hypertext should
be used to find your way through the API. An example:

GET /account/123 HTTP/1.1

HTTP 1.1 200 OK

{
 "account_number":123,
 "balance":100,
 "links": [
 {
 "href":"/account/123/deposit",
 "rel":"deposit"
 },
 {
 "href":"/account/123/withdraw",
 "rel":"withdraw"
 },
 {
 "href":"/account/123/transfer",
 "rel":"transfer"
 },
 {
 "href":"/account/123/close",
 "rel":"close"
 }

31

https://tools.ietf.org/html/rfc6648
https://www.iana.org/assignments/message-headers/message-headers.xhtml
https://opensource.zalando.com/restful-api-guidelines/#proprietary-headers

]
}

Apart from fact that we have 100 Dollars in our account we are provided with 4 options: deposit
more money, withdraw money, transfer money to another account, or close our account. The links
allow us to find out the URLs that are needed to the specific actions. Ow, let’s suppose we didn’t
have 100 usd in the bank, but we actually are in the red:

GET /account/123 HTTP 1.1

HTTP 1.1 200 OK

{
 "account_number":123,
 "balance":-50,
 "links": [
 {
 "href":"/account/123/deposit",
 "rel":"deposit"
 }
]
}

Right now we have lost many of our options, and and only depositing money is valid? As long as we
are in the red, we cannot close our account, nor transfer or withdraw any money from the account.
The hypertext is actually telling us what is allowed and what not.

Relevant in Practice?

Similar to an interaction with a website, a REST client hits an initial API URI and uses the server-
provided links to dynamically discover available actions and accesses the resources it needs. The
client doesn’t need prior knowledge of the service or the different steps involved in a workflow.
Additionally, the clients no longer have to hard code the URI structures for different resources.
HATEOAS allows the server to make URI changes as the API evolves without breaking the clients.

In practice HATEOAS is difficult to implement. This makes the API very complex and can lead to
many requests when clients navigate through the links instead of reading the documentation and
jumping directly to the required endpoints. On top of that, HATEOAS requires that clients use the
API correctly, but in most cases a developer will read the documentation and access the required
endpoints directly instead of navigating through links. Furthermore, the mere presence of the links
is not sufficient to dissociate customers from the need to learn data required to create requests. An
API MUST provide documentation to clearly describe all the links, link relation types and request
response formats for each of the URIs.

However, you can use it, if you checked its limitations and still see clear value for your usage that
justifies its additional complexity.

32

GraphQL
GraphQL is an alternative to the REST-API allowing clients to query the data in the structure they
need, rather than relying on a predefined data structure of a fixed API. This helps to avoid over-
and underfetching but brings its own implementation challenges.


GraphQL can not be used instead of a full REST service (HATEOAS). But can be a
good alternative to Level 2 REST services of the Richardson Maturity Model.

In conclusion GraphQL is an interesting approach, but does not offer a solution for all problems. It
depends on the specific use case, which tool is more suitable.

OData
OData (Open Data Protocol) is a HTTP based protocol which enables creation of REST-based services
which allow resources identified using Uniform Resource Locators (URLs) and defined in a data
model, to be published and edited by Web clients using simple HTTP messages.

OData is an alternative interface technology which fully supports the REST principles. It helps
applications to focus on business logic without worrying about the various API approaches to
define request and response headers, status codes, HTTP methods, URL conventions, media types,
payload formats, query options, etc (For further reading: OData).

REST - more than just CRUD
Often the architectural style of REST APIs is limited to CRUD operations only. Resources are often
mapped exactly to the internal domain-/entity-types using the HTTP verbs (POST, GET, PUT,
DELETE). But sometimes you have to implement some kind of business logic that is not directly
related to a CRUD operation.

For example, you might want to block or suspend a user, which is different from deleting them. It is
often possible to map these to update actions, for example, updating a user with a status attribute
set to suspended but in some cases, this could feel clunky and forced.

In those cases, it makes sense to include actions as resources and place them at URLs such as:

/users/{ID}/actions/suspend

It’s a great idea to denote them clearly, e.g., by prefixing them with /actions, although the use of a
verb (like “suspend”) already gives it away that we’re breaking away from pure CRUD for better
developer experience.


A detailed documentation is very important to ensure that the API is used
correctly.

33

https://www.odata.org/

Checking for Existence
A standard way to check for existence is to use a HEAD request. The result of the HEAD request is
either 200 OK if the resource exists or 404 NOT_FOUND if it does not. However, the usage of 4xx
status codes implies an error situation. This might result in unintended triggering of error
interceptors on the client side. And generally it is a bad practice to abuse exception handling for
control flow.

So, what if non-existence is a valid result and not an error? For example checking the existence of
the username before trying to create a user?

Bad

GET /user/exampleuser?exists

This is bad, because…
… the type of response and status code is inconsistent with the ordinary GET request
… the username is used as a path parameter (see section Identification of Resources)

GET /persons/exampleuser/exists

This is bad, because it introduces a new concept not compatible with REST principles (verb in the
path).

Use filtering and selection for existence checks instead:

Good

GET /persons?username=exampleuser&fields=username

=>
// If the resource person with the given username exists:
200 OK, [{"username": "exampleuser"}]

// If person with the given username does not exist:
200 OK, []


For the check it is advisable to also use a specific query in the backend that only
checks existence instead of fetching resource details.

Examples of good REST-APIs
• Stripe API Reference

• Twilio Docs

34

https://stripe.com/docs/api
https://www.twilio.com/docs/usage/api

• GitHub API Documentation

• Twitter API Documentation

References
The following links and books are recommended for those who want to go deeper into the subject
of good API design.

• Richardson Maturity Model - service-oriented-computing.de - good explaination of the
Richardson Maturity Model (article and video)

• REST API Design Guideline - digitalchargingsolutions.com (guideline)

• REST API Tutorial by Lokesh Gupta (howtodoinjava.com)

• BMW Connected Vehicle API Guides (tutorial)

• Zalando RESTful API and Event Guidelines - zalando.com (guideline)

• Azure / Architecture / Best Practices: RESTful web API design - microsoft.com (guideline)

• Microsoft REST API Guidelines on github.com (guideline)

• The Web API Checklist - 43 Things To Think About When Designing, Testing, and Releasing your
API by Mathieu Fenniak (article)

• Best practices in API documentation - Swagger.io

• API Stylebook - Design Guidelines - a collection of API design guidelines of various companies
and government agencies (collection of guidelines)

• How to do stuff RESTful - Restcookbook.com (cookbook)

• API-Design – Wie man es besser (nicht) macht by Uwe Friedrichsen (video)

• The Design of Everyday APIs by Arnaud Lauret (video)

• List of HTTP status codes - Wikipedia (definition)

• RFC 7807: Problem Details for HTTP APIs (RFC)

• HATEOAS - Wikipedia (definition)

• A better way to implement HTTP PATCH operation in REST APIs on medium.com (article)

• RFC 6902: JavaScript Object Notation (JSON) Patch (RFC)

• Naming Conventions - api.gov.au (naming convention)

• REST API Mistakes Every Junior Developer should Avoid by Islem Maboud (aka CoderOne)
(video)

35

https://developer.github.com/v3/guides/getting-started/
https://developer.twitter.com/en/docs/twitter-api/v1/tweets/search/overview
http://www.service-oriented-computing.de/richardson-maturity-model.php
https://confluence.digitalchargingsolutions.com/display/CI/REST+API+Design+Guidelines
https://restfulapi.net
https://developer.bmw.com/connected-vehicle/develop/guides-and-tutorials/api-guides
https://opensource.zalando.com/restful-api-guidelines
https://docs.microsoft.com/en-US/azure/architecture/best-practices/api-design
https://github.com/Microsoft/api-guidelines/blob/master/Guidelines.md
https://mathieu.fenniak.net/the-api-checklist
https://mathieu.fenniak.net/the-api-checklist
https://swagger.io/resources/articles/best-practices-in-api-documentation
http://apistylebook.com/design/guidelines/
https://restcookbook.com
https://www.youtube.com/watch?v=2xgplCQS1bY
https://twitter.com/ufried
https://youtu.be/RT_3BSaHce8
https://www.linkedin.com/in/arnaudlauret/
https://en.wikipedia.org/wiki/List_of_HTTP_status_codes
https://datatracker.ietf.org/doc/html/rfc7807
https://en.wikipedia.org/wiki/HATEOAS
https://medium.com/@isuru89/a-better-way-to-implement-http-patch-operation-in-rest-apis-721396ac82bf
https://datatracker.ietf.org/doc/html/rfc6902
https://api.gov.au/sections/naming-conventions.html
https://youtu.be/JxeTegu4dD8
https://twitter.com/ipenywis

	REST API Design Guidelines
	Table of Contents
	Table of Contents
	Motivation
	What makes a good API for us at doubleSlash

	Structure - How to read
	General/Introduction
	Richardson Maturity Model

	Resources
	Naming of Resources
	Identification of Resources
	Type of Identifier
	Interaction with resources
	Versioning

	Data Formats
	Use JSON-encoded body payload
	Date and Time Format
	Language Code Format
	Country Code Format
	Currency Format
	Number and Integer Formats

	Parameter
	Naming of Query Parameters
	Filtering
	Selection
	Inclusion
	Sorting
	Pagination

	Error-Handling
	HTTP status codes
	Error details

	Security
	Authentication and Authorization

	Documentation
	Performance
	Caching
	Cache-Control
	Compression
	Asynchronicity

	Further-Concepts
	Testability
	Custom Headers
	HATEOAS
	GraphQL
	OData
	REST - more than just CRUD
	Checking for Existence

	Examples of good REST-APIs
	References

